Lecture 2: Writers' aids: Spelling errors

LING-351 Language Technology and LLMs

Instructor: Hakyung Sung

August 28, 2025

*Acknowledgment: These course slides are based on materials by Lelia Glass @ Georgia Tech (Course: Language & Computers)

Table of contents

- 1. Review
- 2. Spelling problems in writing
- 3. Different types of spelling errors
- 4. Building a simple spell-checker
- 5. Thinking about a more complex spell-checker

Review

Language

- Language
- Writing

- Language
- Writing
- Language = writing?

- · Language
- Writing
- Language = writing?
- Three major systems to encode languages:

- · Language
- Writing
- Language = writing?
- Three major systems to encode languages:
 - Alphabetic

- Language
- Writing
- Language = writing?
- Three major systems to encode languages:
 - $\cdot \ \, \mathsf{Alphabetic} \to \mathsf{sounds}$

- Language
- Writing
- Language = writing?
- Three major systems to encode languages:
 - $\cdot \ \, \mathsf{Alphabetic} \to \mathsf{sounds}$
 - Syllabic

- · Language
- Writing
- Language = writing?
- Three major systems to encode languages:
 - Alphabetic \rightarrow sounds
 - Syllabic → syllables

- Language
- Writing
- Language = writing?
- Three major systems to encode languages:
 - Alphabetic \rightarrow sounds
 - Syllabic → syllables
 - Logographic

- Language
- Writing
- Language = writing?
- Three major systems to encode languages:
 - Alphabetic \rightarrow sounds
 - Syllabic → syllables
 - $\cdot \ \text{Logographic} \to \text{meanings}$

 Digital technology can be understood as another form of writing to encode language into digital formats

- Digital technology can be understood as another form of writing to encode language into digital formats
- Bit (0/1 signal): the smallest unit of digital information

- Digital technology can be understood as another form of writing to encode language into digital formats
- Bit (0/1 signal): the smallest unit of digital information
- Byte (8 bits): a bundle of 8 bits, the basic unit of storage

- Digital technology can be understood as another form of writing to encode language into digital formats
- Bit (0/1 signal): the smallest unit of digital information
- · Byte (8 bits): a bundle of 8 bits, the basic unit of storage
- Character encoding (UTF-8): rules that map bytes to code points

- · Review
- Spelling problems in writing

- · Review
- Spelling problems in writing
- \cdot Different types of spelling errors

- · Review
- Spelling problems in writing
- Different types of spelling errors
- · Building a simple spell-checker

- · Review
- · Spelling problems in writing
- Different types of spelling errors
- · Building a simple spell-checker
- · Thinking about a more complex spell-checker

- · Review
- Spelling problems in writing
- Different types of spelling errors
- · Building a simple spell-checker
- · Thinking about a more complex spell-checker
- Wrap-up

Key idea: Spelling errors are annoying

- · Review
- Spelling problems in writing
- · Different types of spelling errors
- · Building a simple spell-checker
- · Thinking about a more complex spell-checker
- Wrap-up

Key idea: Spelling errors are annoying Spelling errors vary by types (and even by languages); there is no one-size-fits-all solution.

Spelling problems in writing

• English has used the Latin alphabet since the 9th century

- English has used the Latin alphabet since the 9th century
 - $\boldsymbol{\cdot}$ Before that, Old English was written in the runic script

- English has used the Latin alphabet since the 9th century
 - · Before that, Old English was written in the runic script
 - Christian missionaries introduced the Latin alphabet in the 7th century

- English has used the Latin alphabet since the 9th century
 - · Before that, Old English was written in the runic script
 - Christian missionaries introduced the Latin alphabet in the 7th century
 - By the 9th century, it became the dominant writing system

- English has used the Latin alphabet since the 9th century
 - · Before that, Old English was written in the runic script
 - Christian missionaries introduced the Latin alphabet in the 7th century
 - · By the 9th century, it became the dominant writing system
- Related technologies:

- English has used the Latin alphabet since the 9th century
 - · Before that, Old English was written in the runic script
 - Christian missionaries introduced the Latin alphabet in the 7th century
 - \cdot By the 9th century, it became the dominant writing system
- Related technologies:
 - Handwriting on parchment and paper (monastic scribes, medieval manuscripts)

- English has used the Latin alphabet since the 9th century
 - · Before that, Old English was written in the runic script
 - Christian missionaries introduced the Latin alphabet in the 7th century
 - \cdot By the 9th century, it became the dominant writing system
- Related technologies:
 - Handwriting on parchment and paper (monastic scribes, medieval manuscripts)
 - Printing press (1470s in Englan)
 - \rightarrow wider literacy, circulation of books

- English has used the Latin alphabet since the 9th century
 - · Before that, Old English was written in the runic script
 - Christian missionaries introduced the Latin alphabet in the 7th century
 - · By the 9th century, it became the dominant writing system
- Related technologies:
 - Handwriting on parchment and paper (monastic scribes, medieval manuscripts)
 - Printing press (1470s in Englan)
 - → wider literacy, circulation of books
 - · Typewriter (1860s)
 - \rightarrow faster, more uniform writing

- English has used the Latin alphabet since the 9th century
 - · Before that, Old English was written in the runic script
 - Christian missionaries introduced the Latin alphabet in the 7th century
 - \cdot By the 9th century, it became the dominant writing system
- Related technologies:
 - Handwriting on parchment and paper (monastic scribes, medieval manuscripts)
 - Printing press (1470s in Englan)
 - → wider literacy, circulation of books
 - · Typewriter (1860s)
 - → faster, more uniform writing
 - Digital word processing (20th century)
 - → autocorrect, spell checkers

- English has used the Latin alphabet since the 9th century
 - · Before that, Old English was written in the runic script
 - Christian missionaries introduced the Latin alphabet in the 7th century
 - By the 9th century, it became the dominant writing system
- Related technologies:
 - Handwriting on parchment and paper (monastic scribes, medieval manuscripts)
 - Printing press (1470s in Englan)
 - → wider literacy, circulation of books
 - · Typewriter (1860s)
 - → faster, more uniform writing
 - · Digital word processing (20th century)
 - \rightarrow autocorrect, spell checkers
- · Standardized spelling came much later...

• Spelling wasn't standardized until the mid-1600s to 1700s

- Spelling wasn't standardized until the mid-1600s to 1700s
- Influenced by:

- Spelling wasn't standardized until the mid-1600s to 1700s
- Influenced by:
 - King James Bible (1611) named after King James I of England, who authorized a new translation by scholars to unify religious practices

- Spelling wasn't standardized until the mid-1600s to 1700s
- Influenced by:
 - King James Bible (1611) named after King James I of England, who authorized a new translation by scholars to unify religious practices
 - Early dictionaries e.g., Robert Cawdrey's *Table Alphabeticall* (1604), Samuel Johnson's dictionary (1755)

- Spelling wasn't standardized until the mid-1600s to 1700s
- Influenced by:
 - King James Bible (1611) named after King James I of England, who authorized a new translation by scholars to unify religious practices
 - Early dictionaries e.g., Robert Cawdrey's *Table Alphabeticall* (1604), Samuel Johnson's dictionary (1755)
- · Authors themselves didn't use consistent spelling

- Spelling wasn't standardized until the mid-1600s to 1700s
- Influenced by:
 - King James Bible (1611) named after King James I of England, who authorized a new translation by scholars to unify religious practices
 - Early dictionaries e.g., Robert Cawdrey's *Table Alphabeticall* (1604), Samuel Johnson's dictionary (1755)
- Authors themselves didn't use consistent spelling
- · Shakespeare's name appeared in many forms:

- Spelling wasn't standardized until the mid-1600s to 1700s
- Influenced by:
 - King James Bible (1611) named after King James I of England, who authorized a new translation by scholars to unify religious practices
 - Early dictionaries e.g., Robert Cawdrey's *Table Alphabeticall* (1604), Samuel Johnson's dictionary (1755)
- Authors themselves didn't use consistent spelling
- · Shakespeare's name appeared in many forms:

- Spelling wasn't standardized until the mid-1600s to 1700s
- Influenced by:
 - King James Bible (1611) named after King James I of England, who authorized a new translation by scholars to unify religious practices
 - Early dictionaries e.g., Robert Cawdrey's *Table Alphabeticall* (1604), Samuel Johnson's dictionary (1755)
- · Authors themselves didn't use consistent spelling
- · Shakespeare's name appeared in many forms:

Willm Shakp, William Shaksper, Wm Shakspe, William Shakspere, William Shakspere, William Shakspeare

Why standardized spelling?

• Even without standard spelling, we understand:

Why standardized spelling?

Even without standard spelling, we understand:
 To what extent do the spellling errers in this setnence dirsupt your undertsanding?

Why standardized spelling?

- Even without standard spelling, we understand:
 To what extent do the spellling errers in this setnence dirsupt your undertsanding?
- Readers often focus on word shape, not letter-by-letter decoding

What if everyone spelled freely?

• In Shakespeare's time, spelling was flexible.

What if everyone spelled freely?

- In Shakespeare's time, spelling was flexible.
- Imagine replacing English spelling with IPA (phonetic spelling).

What if everyone spelled freely?

- · In Shakespeare's time, spelling was flexible.
- Imagine replacing English spelling with IPA (phonetic spelling).

Question

What are the benefits and drawbacks of having a standardized spelling system?

Benefits of standardized spelling

 Supports literacy across dialects/various pronunciations (e.g., tomato, Atlanta)

Benefits of standardized spelling

- Supports literacy across dialects/various pronunciations (e.g., tomato, Atlanta)
- · Enables searching and record-keeping

• English spelling remains complex

- English spelling remains complex
- Thankfully, we have writers' aids:

- · English spelling remains complex
- Thankfully, we have writers' aids:
 - Spell checkers

- · English spelling remains complex
- Thankfully, we have writers' aids:
 - · Spell checkers
 - Predictive text; auto-complete

- · English spelling remains complex
- Thankfully, we have writers' aids:
 - · Spell checkers
 - · Predictive text; auto-complete
 - Generative LLMs

- · English spelling remains complex
- Thankfully, we have writers' aids:
 - · Spell checkers
 - · Predictive text; auto-complete
 - · Generative LLMs

- · English spelling remains complex
- Thankfully, we have writers' aids:
 - · Spell checkers
 - Predictive text; auto-complete
 - · Generative LLMs

Group discussion

· (Put into the shared deck) Come up with at least one example

- · English spelling remains complex
- Thankfully, we have writers' aids:
 - · Spell checkers
 - · Predictive text; auto-complete
 - · Generative LLMs

- · (Put into the shared deck) Come up with at least one example
- How often do you use tools to check the spelling errors?

- · English spelling remains complex
- Thankfully, we have writers' aids:
 - · Spell checkers
 - Predictive text; auto-complete
 - · Generative LLMs

- · (Put into the shared deck) Come up with at least one example
- · How often do you use tools to check the spelling errors?
- · Which one do you rely on the most?

- · English spelling remains complex
- Thankfully, we have writers' aids:
 - · Spell checkers
 - Predictive text; auto-complete
 - · Generative LLMs

- · (Put into the shared deck) Come up with at least one example
- · How often do you use tools to check the spelling errors?
- · Which one do you rely on the most?
- · Do they ever create problems (instead of solving them)?

Breaking down the problem

Not all spelling errors are the same.

Breaking down the problem

Not all spelling errors are the same. To solve them, we need to consider **error types**.

Different types of spelling errors

Spelling error types

- · 1. Non-word errors
- · 2. Real-word errors
- · Notes. How common?

• True confusion:

· True confusion:

"sissors" (not knowing the correct form)

· True confusion:

- "sissors" (not knowing the correct form)
- Typos: "hte" (keyboard slip)

· True confusion:

- "sissors" (not knowing the correct form)
- Typos: "hte" (keyboard slip)
- Automatically detected when:

· True confusion:

- "sissors" (not knowing the correct form)
- Typos: "hte" (keyboard slip)
- · Automatically detected when:
 - Word not found in dictionary of correct spellings

Quantifying misspellings: Edit distance

Measures how "far apart" two strings are

Quantifying misspellings: Edit distance

- · Measures how "far apart" two strings are
- Known as Levenshtein distance

Quantifying misspellings: Edit distance

- · Measures how "far apart" two strings are
- · Known as Levenshtein distance
- Minimum number of operations to transform one word into another

Edit distance: Basic operations

Each operation = 1 unit of cost

- Insertion: aquire → accquire
- **Deletion**: $arguement \rightarrow argument$
- Substitution: $calender \rightarrow calandar$
- Transposition: con<u>cs</u>ious → con<u>sc</u>ious
 - · Sometimes counted as two substitutions

• Helps suggest the **closest correct word** when a typo is found

- · Helps suggest the closest correct word when a typo is found
- · In other words, can be used to suggest candidate corrections

- · Helps suggest the closest correct word when a typo is found
- $\boldsymbol{\cdot}$ In other words, can be used to suggest candidate corrections
 - 1. Input: recieve

- · Helps suggest the closest correct word when a typo is found
- $\boldsymbol{\cdot}$ In other words, can be used to suggest candidate corrections
 - 1. Input: recieve
 - · Candidates: receive, recipe

- · Helps suggest the closest correct word when a typo is found
- · In other words, can be used to suggest candidate corrections
 - 1. Input: recieve
 - · Candidates: receive, recipe
 - 2. Input: acommodation

- · Helps suggest the closest correct word when a typo is found
- In other words, can be used to suggest candidate corrections
 - 1. Input: recieve
 - · Candidates: receive, recipe
 - 2. Input: acommodation
 - · Candidates: accommodation, commendation

Not all errors are equally likely

- · Not all errors are equally likely
- Edit distance can be weighted for more realistic corrections

- · Not all errors are equally likely
- Edit distance can be weighted for more realistic corrections
- Substituting a nearby key on the keyboard may cost less than a distant one

- · Not all errors are equally likely
- Edit distance can be weighted for more realistic corrections
- Substituting a nearby key on the keyboard may cost less than a distant one
 - e.g., friemd \rightarrow friend (substitution: $m \rightarrow n$, keys are adjacent \rightarrow low cost)

- · Not all errors are equally likely
- Edit distance can be weighted for more realistic corrections
- Substituting a nearby key on the keyboard may cost less than a distant one
 - e.g., friemd \rightarrow friend (substitution: $m \rightarrow n$, keys are adjacent \rightarrow low cost)
 - vs. $friemd \rightarrow fried$ (deletion of m, more disruptive \rightarrow higher cost)

Traditional method: Dictionary + Edit Distance: How it works

Relies on a dictionary of correct words

Traditional method: Dictionary + Edit Distance: How it works

- · Relies on a dictionary of correct words
- · Calculates distance between misspelling and candidates

Traditional method: Dictionary + Edit Distance: How it works

- · Relies on a dictionary of correct words
- · Calculates distance between misspelling and candidates
- Suggests the closest candidate as the correction

Traditional method: Dictionary + Edit Distance: How it works

- · Relies on a dictionary of correct words
- · Calculates distance between misspelling and candidates
- · Suggests the closest candidate as the correction
- · Adds some weights for more realistic correction

Traditional method: Dictionary + Edit Distance: How it works

- · Relies on a dictionary of correct words
- · Calculates distance between misspelling and candidates
- Suggests the closest candidate as the correction
- · Adds some weights for more realistic correction

Limitations

• Fails with new words or domain-specific terms (e.g., rizz, COVID-19)

Traditional method: Dictionary + Edit Distance: How it works

- · Relies on a dictionary of correct words
- · Calculates distance between misspelling and candidates
- · Suggests the closest candidate as the correction
- · Adds some weights for more realistic correction

- Fails with new words or domain-specific terms (e.g., rizz, COVID-19)
- Ignores context (e.g., I want to by a book → intended: buy)

Traditional method: Dictionary + Edit Distance: How it works

- · Relies on a dictionary of correct words
- · Calculates distance between misspelling and candidates
- · Suggests the closest candidate as the correction
- · Adds some weights for more realistic correction

- Fails with new words or domain-specific terms (e.g., rizz, COVID-19)
- Ignores context (e.g., I want to by a book → intended: buy)

Traditional method: Dictionary + Edit Distance: How it works

- · Relies on a dictionary of correct words
- · Calculates distance between misspelling and candidates
- · Suggests the closest candidate as the correction
- · Adds some weights for more realistic correction

Limitations

- Fails with new words or domain-specific terms (e.g., rizz, COVID-19)
- Ignores context (e.g., I want to by a book → intended: buy)

Q. What happens if the misspelled word is still a real word?

1. Local syntactic errors: *Their was a problem

- 1. Local syntactic errors: *Their was a problem
- 2. Long-distance syntactic errors: *The key to the cabinets <u>are</u> on the table

- 1. Local syntactic errors: *Their was a problem
- 2. Long-distance syntactic errors: *The key to the cabinets <u>are</u> on the table
- 3. Semantic errors: I read the brook

- 1. Local syntactic errors: *Their was a problem
- 2. Long-distance syntactic errors: *The key to the cabinets <u>are</u> on the table
- 3. Semantic errors: I read the brook
 - · Solving this problem is more difficult:

- 1. Local syntactic errors: *Their was a problem
- 2. Long-distance syntactic errors: *The key to the cabinets <u>are</u> on the table
- 3. Semantic errors: I read the brook
 - · Solving this problem is more difficult:
 - The result is still a valid word → not flagged by a dictionary

- 1. Local syntactic errors: *Their was a problem
- 2. Long-distance syntactic errors: *The key to the cabinets <u>are</u> on the table
- 3. Semantic errors: I read the brook
 - · Solving this problem is more difficult:
 - The result is still a valid word → not flagged by a dictionary
 - Surrounding context must be considered

 About 2–3% of all typed words on a full-size keyboard are misspelled by proficient adults (Flor et al., 2015)

Table 2. Summary statistics for the ETS Spelling Corpus					
	GRE Argument	GRE Issue	TOEFL Independent	TOEFL Integrated	TOTAL
Total essays	750	750	750	750	3,000
Essays without misspellings	60	21	18	21	120
Total Word Count	263,578	336,301	212,930	151,031	963,840
Average Word Count	351	448	284	201	321
Total count of Misspellings	5,935	7,962	7,285	5,230	26,412
Misspellings as % of all words	2.25%	2.37%	3.42%	3.46%	2.74%

Figure 1: Flor et al. (2015), p. 112

 About 2–3% of all typed words on a full-size keyboard are misspelled by proficient adults (Flor et al., 2015)

Table 2. Summary statistics for the ETS Spelling Corpus					
	GRE	GRE	TOEFL	TOEFL	TOTAL
	Argument	Issue	Independent	Integrated	IOIAL
Total essays	750	750	750	750	3,000
Essays without misspellings	60	21	18	21	120
Total Word Count	263,578	336,301	212,930	151,031	963,840
Average Word Count	351	448	284	201	321
Total count of Misspellings	5,935	7,962	7,285	5,230	26,412
Misspellings as % of all words	2.25%	2.37%	3.42%	3.46%	2.74%

Figure 1: Flor et al. (2015), p. 112

• Most errors are single-character misspellings (edit distance = 1)

 About 2–3% of all typed words on a full-size keyboard are misspelled by proficient adults (Flor et al., 2015)

Table 2. Summary statistics for the ETS Spelling Corpus					
	GRE Argument	GRE Issue	TOEFL Independent	TOEFL Integrated	TOTAL
Total essays	750	750	750	750	3,000
Essays without misspellings	60	21	18	21	120
Total Word Count	263,578	336,301	212,930	151,031	963,840
Average Word Count	351	448	284	201	321
Total count of Misspellings	5,935	7,962	7,285	5,230	26,412
Misspellings as % of all words	2.25%	2.37%	3.42%	3.46%	2.74%

Figure 1: Flor et al. (2015), p. 112

- Most errors are single-character misspellings (edit distance = 1)
- On a mobile phone, however, about 40% of words are misspelled (Grammarly, 2019)

 About 2–3% of all typed words on a full-size keyboard are misspelled by proficient adults (Flor et al., 2015)

Table 2. Summary statistics for the ETS Spelling Corpus					
	GRE	GRE	TOEFL	TOEFL	TOTAL
	Argument	Issue	Independent	Integrated	IUIAL
Total essays	750	750	750	750	3,000
Essays without misspellings	60	21	18	21	120
Total Word Count	263,578	336,301	212,930	151,031	963,840
Average Word Count	351	448	284	201	321
Total count of Misspellings	5,935	7,962	7,285	5,230	26,412
Misspellings as % of all words	2.25%	2.37%	3.42%	3.46%	2.74%

Figure 1: Flor et al. (2015), p. 112

- Most errors are single-character misspellings (edit distance = 1)
- On a mobile phone, however, about 40% of words are misspelled (Grammarly, 2019)
- More multi-error misspellings and real-word errors due to auto-complete (e.g., restaurant → typed as restuarnt → auto-corrected to restart)

Building a simple spell-checker

Baseline spell checker (Peter Norvig)

· Generate all candidate words within 1–2 edits

Baseline spell checker (Peter Norvig)

- · Generate all candidate words within 1–2 edits
- · Keep only words in the dictionary from a corpus

Baseline spell checker (Peter Norvig)

- · Generate all candidate words within 1–2 edits
- · Keep only words in the dictionary from a corpus
- Pick the most frequent candidate

- · Generate all candidate words within 1–2 edits
- · Keep only words in the dictionary from a corpus
- Pick the most frequent candidate
- Example:

- · Generate all candidate words within 1–2 edits
- · Keep only words in the dictionary from a corpus
- · Pick the most frequent candidate
- · Example:
 - Input: langage

- · Generate all candidate words within 1–2 edits
- · Keep only words in the dictionary from a corpus
- · Pick the most frequent candidate
- Example:
 - · Input: langage
 - · Candidates: language, lineage

- · Generate all candidate words within 1–2 edits
- · Keep only words in the dictionary from a corpus
- · Pick the most frequent candidate
- Example:
 - · Input: langage
 - · Candidates: language, lineage
 - Output: language

 $\boldsymbol{\cdot}$ Some typos are more likely than others

- \cdot Some typos are more likely than others
 - Adjacent key slips (e.g., $friemd \rightarrow friend$)

- Some typos are more likely than others
 - Adjacent key slips (e.g., friemd → friend)
 - Transpositions (e.g., $teh \rightarrow the$)

- Some typos are more likely than others
 - · Adjacent key slips (e.g., friemd → friend)
 - Transpositions (e.g., teh → the)
- · Baseline only looks at **frequency**, not how errors happen

- · Some typos are more likely than others
 - Adjacent key slips (e.g., friemd → friend)
 - Transpositions (e.g., teh → the)
- · Baseline only looks at frequency, not how errors happen
- · We need a better model: noisy channel

Formula $arg \max_{w} P(observed \mid w) \cdot P(w)$

Formula $arg \max_{w} P(observed \mid w) \cdot P(w)$

• **P(w)** = prior probability (word frequency)

Formula $arg \max_{w} P(observed \mid w) \cdot P(w)$

- P(w) = prior probability (word frequency)
- P(observed|w) = likelihood of making that typo

Formula

 $arg max_w P(observed \mid w) \cdot P(w)$

- P(w) = prior probability (word frequency)
- P(observed|w) = likelihood of making that typo
- Example:

Formula

 $arg max_w P(observed \mid w) \cdot P(w)$

- P(w) = prior probability (word frequency)
- P(observed|w) = likelihood of making that typo
- Example:
 - Input: recieve

Formula

 $arg \max_{w} P(observed \mid w) \cdot P(w)$

- P(w) = prior probability (word frequency)
- P(observed|w) = likelihood of making that typo
- Example:
 - · Input: recieve
 - · Candidates: recipe, receive

Formula

 $arg \max_{w} P(observed \mid w) \cdot P(w)$

- P(w) = prior probability (word frequency)
- P(observed|w) = likelihood of making that typo
- Example:
 - · Input: recieve
 - · Candidates: recipe, receive
 - Baseline (frequency only) → recipe

Formula

 $arg max_w P(observed \mid w) \cdot P(w)$

- P(w) = prior probability (word frequency)
- P(observed|w) = likelihood of making that typo
- · Example:
 - · Input: recieve
 - · Candidates: recipe, receive
 - Baseline (frequency only) → recipe
 - Noisy channel (frequency + typo likelihood) → receive

Thinking about a more complex spell-checker

Example: Someone types:

You put the catt before the horse.

 The word catt is not found in a dictionary or corpus ⇒ likely a misspelling.

Example: Someone types:

- The word catt is not found in a dictionary or corpus ⇒ likely a misspelling.
- · A simple spell-checker (like Norvig's) would:

Example: Someone types:

- The word catt is not found in a dictionary or corpus ⇒ likely a misspelling.
- · A simple spell-checker (like Norvig's) would:
 - · Consider all known words with edit distance 1 from catt

Example: Someone types:

- The word catt is not found in a dictionary or corpus ⇒ likely a misspelling.
- · A simple spell-checker (like Norvig's) would:
 - · Consider all known words with edit distance 1 from catt
 - · Choose the most frequent candidate: cat

Example: Someone types:

- The word catt is not found in a dictionary or corpus ⇒ likely a misspelling.
- · A simple spell-checker (like Norvig's) would:
 - · Consider all known words with edit distance 1 from catt
 - · Choose the most frequent candidate: cat
- But the better correction is actually cart, because:

Example: Someone types:

- The word catt is not found in a dictionary or corpus ⇒ likely a misspelling.
- · A simple spell-checker (like Norvig's) would:
 - · Consider all known words with edit distance 1 from catt
 - · Choose the most frequent candidate: cat
- But the better correction is actually cart, because:
 - put the cart before the horse is a common English expression

Example: Someone types:

- The word catt is not found in a dictionary or corpus ⇒ likely a misspelling.
- · A simple spell-checker (like Norvig's) would:
 - · Consider all known words with edit distance 1 from catt
 - · Choose the most frequent candidate: cat
- But the better correction is actually cart, because:
 - put the cart before the horse is a common English expression
 - · put the cat before the horse is not

N-grams are sequences of n elements (e.g., words or characters):

• Unigram = one word: the

N-grams are sequences of n elements (e.g., words or characters):

- Unigram = one word: the
- Bigram = two-word sequence: the cat

N-grams are sequences of *n* elements (e.g., words or characters):

- Unigram = one word: the
- Bigram = two-word sequence: the cat
- Trigram = three-word sequence: put the cat

N-grams are sequences of *n* elements (e.g., words or characters):

- Unigram = one word: the
- Bigram = two-word sequence: the cat
- Trigram = three-word sequence: put the cat

N-grams are sequences of *n* elements (e.g., words or characters):

- Unigram = one word: the
- Bigram = two-word sequence: the cat
- Trigram = three-word sequence: put the cat

How do we use this?

· Count all *n*-grams (e.g., bigrams) in a large corpus

```
Demo: https:
//huggingface.co/spaces/liujch1998/infini-gram
```

N-grams are sequences of *n* elements (e.g., words or characters):

- Unigram = one word: the
- Bigram = two-word sequence: the cat
- Trigram = three-word sequence: put the cat

How do we use this?

- · Count all *n*-grams (e.g., bigrams) in a large corpus
- Use frequency of phrases to estimate how likely a candidate is in context

```
Demo: https:
//huggingface.co/spaces/liujch1998/infini-gram
```

N-grams are sequences of *n* elements (e.g., words or characters):

- Unigram = one word: the
- Bigram = two-word sequence: the cat
- Trigram = three-word sequence: put the cat

How do we use this?

- · Count all *n*-grams (e.g., bigrams) in a large corpus
- Use frequency of phrases to estimate how likely a candidate is in context
- put the cart is more frequent than put the cat

```
Demo: https:
//huggingface.co/spaces/liujch1998/infini-gram
```

Other approaches

 Statistical Language Models (n-grams) Use probability of surrounding context e.g., I went to the shcool → "school" is more probable

Summary: Traditional = simple but context-blind Modern = complex but context-aware

Other approaches

- Statistical Language Models (n-grams) Use probability of surrounding context e.g., I went to the shcool → "school" is more probable
- Neural Spell Checkers (Deep Learning) Seq2Seq / Transformer-based models generate corrected text Examples: ChatGPT, Grammarly, Google Docs

Summary: Traditional = simple but context-blind Modern = complex but context-aware

Other approaches

- Statistical Language Models (n-grams) Use probability of surrounding context e.g., I went to the shcool → "school" is more probable
- Neural Spell Checkers (Deep Learning) Seq2Seq / Transformer-based models generate corrected text Examples: ChatGPT, Grammarly, Google Docs
- **Hybrid Approaches** Combine edit distance with language models; pick the highest probability candidate

Summary: Traditional = simple but context-blind Modern = complex but context-aware

 Not all mistakes are spelling errors → some are real-word errors.

- Not all mistakes are spelling errors → some are real-word errors.
 - Example: I want to by a book \rightarrow "by" is valid, intended: buy

- Not all mistakes are spelling errors → some are real-word errors.
 - Example: I want to by a book → "by" is valid, intended: buy
- · Real-word errors often overlap with **grammar errors**.

- Not all mistakes are spelling errors → some are real-word errors.
 - Example: I want to by a book → "by" is valid, intended: buy
- · Real-word errors often overlap with **grammar errors**.
 - Example: Their going to school → all words exist, but grammar is wrong (They're)

- Not all mistakes are spelling errors → some are real-word errors.
 - Example: I want to by a book → "by" is valid, intended: buy
- · Real-word errors often overlap with **grammar errors**.
 - Example: Their going to school → all words exist, but grammar is wrong (They're)
- Modern systems therefore blur the line between spell checking and grammar checking, using context-aware models to handle both (which we'll talk about in the next class).

Key idea: Spelling errors are annoying

Key idea: Spelling errors are annoying Spelling errors vary by types

Key idea: Spelling errors are annoying Spelling errors vary by types More questions to think about:

- · What about the spacing errors?
- What about in other languages that have different encoding systems?